

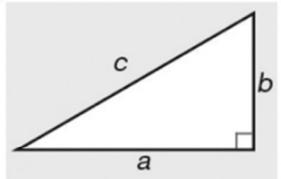
Class 5 + 4 Mathematics Formula sheet

Shape

Areas		Volumes	
Rectangle = $l \times w$		Cuboid = $l \times w \times h$	
Parallelogram = $b \times h$		Prism = area of cross section \times length	
Triangle = $\frac{1}{2} b \times h$		Cylinder = $\pi r^2 h$	
Trapezium = $\frac{1}{2} (a + b)h$		Pyramid = $\frac{1}{3} \times \text{area of base} \times h$	
Volume of a right cone	$V = \frac{1}{3} \pi r^2 h$, where r is the radius, h is the height		
Area of the curved surface of a cone	$A = \pi r l$, where r is the radius, l is the slant height		
Volume of a sphere	$V = \frac{4}{3} \pi r^3$, where r is the radius		
Surface area of a sphere	$A = 4\pi r^2$, where r is the radius		

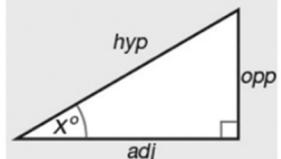
Circles	
Circumference = $\pi \times \text{diameter}$, $C = \pi d$	
Circumference = $2 \times \pi \times \text{radius}$, $C = 2\pi r$	
Area of a circle = $\pi \times \text{radius squared}$, $A = \pi r^2$	

Arcs and Sectors	
Area of a Sector	$A = \frac{\theta}{360^\circ} \times \pi r^2$
Length of an Arc	$A = \frac{\theta}{360^\circ} \times \pi d$


Angles in Polygons	
Sum of Interior Angles = $(n - 2) \times 180^\circ$	
Where n is the number of sides of the shape	
Exterior Angles add up to 360°	
One exterior angle in a REGULAR polygon:	
	$\frac{360^\circ}{n}$
Pairs of Interior and Exterior Angles add up to 180°	

Geometry

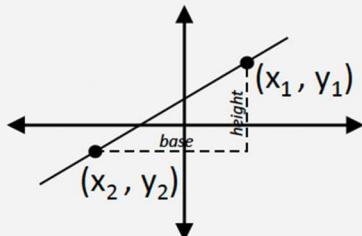
Pythagoras


Pythagoras' Theorem

For a right-angled triangle,
 $a^2 + b^2 = c^2$

Trigonometric ratios (new to F)

$$\sin x^\circ = \frac{\text{opp}}{\text{hyp}}, \cos x^\circ = \frac{\text{adj}}{\text{hyp}}, \tan x^\circ = \frac{\text{opp}}{\text{adj}}$$



Gradient of a Line

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

or

$$m = \frac{\text{height}}{\text{base}}$$

Midpoint of two points

between (x_1, y_1) and (x_2, y_2) $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)$

Distance between two points

between (x_1, y_1) and (x_2, y_2) $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Number and algebra

Compound Growth & Decay

The amount after n years (or days, etc.) is:

$$\text{starting amount} \times \left(1 \pm \frac{r}{100}\right)^n$$

where r is the rate of change.

The \pm means + for growth and - for decay

Quadratic Sequences

The n^{th} term of a quadratic sequence is in the form $an^2 + bn + c$, where

$2a = 2^{\text{nd}}$ difference

$3a + b = 1^{\text{st}}$ difference (between 1st and 2nd term)

$a + b + c = 1^{\text{st}}$ term in the sequence

Speed

$$\text{speed} = \frac{\text{distance}}{\text{time}}$$

